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The Standard Conjectures

STEVEN L. KLEIMAN

ABSTRACT. This paper introduces the formalism of Grothendieck’s two
“standard conjectures”. We discuss the context in which the conjectures
arose, their implications for the category of numerical equivalence (neq)
motives, the way they explain the Weil conjectures, the basic theory of cor-
respondences, eight important forms of the Lefschetz standard conjecture,
and finally the Hodge standard conjecture and its implications.

1. Introduction

Grothendieck published only one article [5] about the two conjectures on
algebraic cycles, which he called the “standard conjectures”. The article is
short and expository; it states a number of implications and indicates their
significance, but gives no proofs. The proofs, together with further develop-
ment of the theory, appeared at about the same time in the author’s article
[12], which was written at Grothendieck’s request and with his aid and en-
couragement (but without his revealing that [5] was in the works). In this
paper, we review the old theory and the subsequent developments.

Grothendieck [5, p. 193] wrote that the conjectures “arose from an attempt
at understanding the conjectures of Weil on the {-functions of algebraic va-
rieties ... and they were worked out about three years ago independently
by Bombieri and myself.” He concluded his article with these words: “The
proof of the two standard conjectures would yield results going considerably
further than Weil’s conjectures. They would form the basis of the so-called
‘theory of motives’ which is a systematic theory of ‘arithmetic properties’ of
algebraic varieties as embodied in their groups of classes of cycles for numer-
ical equivalence. ... Alongside the problem of resolution of singularities, the
proof of the standard conjectures seems to me to be the most urgent task in
algebraic geometry.” ‘
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Grothendieck formulated the two conjectures for smooth, projective va-
rieties X over an algebraically closed ground field k using the {-adic étale
cohomology groups H'(X) where ¢ is a prime different from the character-
istic of k. He fixed an isomorphism of the £-group of roots of unity in k"
with Q,/Z, “for simplicity” so that each algebraic cycle of codimension i
has a cohomology class in H*(X). This act is unusual (within parentheses,
Grothendieck called it a “heresy!”);l however, it does serve to clarify the na-
ture of the conjectures and their consequences. For example, as we shall see,
the conjectures imply all three Weil conjectures—indeed, explain them-—yet
there is no need to keep track of twisting by roots of unity. Furthermore, the
theory looks more geometric.

The two conjectures are easy to state. The first, the Lefschetz standard con-
Jecture, asserts that an abstract analogue of the A-operator of Hodge theory
is induced by an algebraic cycle on X x X . This conjecture has other forms,
which will be discussed in §4; however, Grothendieck [5, bottom of p. 196}
wrote that it “seems to be most amenable” in this form. The second conjec-
ture, the Hodge standard conjecture, asserts that there is an abstract version
of the Hodge index theorem for the Q-vector space of classes of algebraic
cycles. In characteristic zero, the second conjecture holds of course, but the
first is still unknown.

Given the two standard conjectures, the category of numerical equiva-
lence (neq) motives has marvelous properties indeed. Grothendieck pub-
lished nothing on motives himself, but his ideas were explained and devel-
oped twenty years ago by Demazure [2], Manin [14], Saavedra [15], and the
author [13]. See also Scholl’s report [16, §1] in these proceedings. Scholl
explains, among other things, a lovely variant, due to Jannsen [8, pp. 447-8],
of Grothendieck’s construction of the category of neq motives.

Grothendieck’s construction of the category of neq motives proceeds in
stages. First, the neg correspondence category is formed: an object is a
smooth, projective variety X ; and a set of maps Hom (X, Y) is the Q-
vector space of neq classes of algebraic cycles of codimension r on X x Y
where r := dim X ; the composition of a class ¥ on X x Y with a class v
on Y x Z is the class pm(przu . p;3v) where the p’s are the projections.
The category has direct sums and tensor products; they are induced by the
disjoint union and Cartesian product of varieties. Next, the category of neg
effective motives is formed by formally adding images of all projectors (idem-
potent endomorphisms) 7 ; the objects of this category are the pairs (X, 7).
For example, the class of X x {point} is a projector, and if X = P! , then
the corresponding motive is called the Lefschetz motive and denoted by L.
Finally, the whole category of neq motives is obtained by formally adding
the tensor product inverse T of L, called the Tate motive.

The exclamation point is Grothendieck’s.
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The category of neq motives is conjectured to be the subcategory of semi-
simple objects in a larger category of “mixed motives”.” Indeed, there should
be a more refined local and relative theory of motivic sheaves and motivic
cohomology. In this conjectured theory, there is an important role to be
played by a host of natural equivalence relations that filter the groups of al-
gebraic cycles and breach the gap between numerical equivalence and rational
equivalence. Work in this direction has been carried out by Beilinson, Bloch,
Jannsen, Murre, and many others; see Jannsen’s comprehensive report [9] in
these proceedings. ‘ ’

The standard conjectures imply that each neq motive has a semisimple
endomorphism ring, or equivalently, that the category is semisimple abelian.
(The basic reason why was given by Weil for curves, and developed by Serre
{19] in higher dimensions.) Grothendieck called this fact a “miracle” (the
author personally heard him do so on several occasions). However, in a
remarkable piece of work, Jannsen [8] recently proved this semisimplicity
without assuming the conjectures. In fact, he proved the converse: if an
equivalence relation on cycles gives rise in similar fashion to a semisimple
category of motives, then the relation is necessarily numerical equivalence.
Jannsen’s proof is short and elementary; it could have been found in the
1960s when motives were first considered. However, unlike the standard
conjectures, Jannsen’s work does not yield the semisimplicity of the Frobe-
nius endomorphism, which yields the (E. Artin~Weil) Riemann hypothesis.
Nevertheless, perhaps Jannsen’s success is a sign that the standard conjectures
are more tractable than we have come to believe.

The two standard conjectures have another important consequence, which
is unknown even in characteristic zero: the coincidence of homological equiv-
alence and numerical equivalence of algebraic cycles. When this coincidence
occurs on X x Y, then every map from the neq motive of X to that of ¥
induces a map from the cohomology of X to that of ¥ . Sometimes, the
coincidence of the two relations can be proved by sandwiching homological
equivalence between numerical equivalence and another equivalence relation.
For example, an old theorem asserts that, if a divisor is numerically equiva-
lent to 0, then some multiple is algebraically equivalent to 0, and a fortiori
homologically equivalent to 0. At first, it was hoped that a similar converse
would hold for cycles of arbitrary codimension, but this hope was dashed
in 1969 when Griffiths found a counterexample. Recently, Beilinson spec-
ulated (private communication, fall 1989) that algebraic equivalence might
be replaced by a broader relation such as this one, which he called “Drinfeld
equivalence™ a cycle Z on X is Drinfeld equivalent to O if there exists

fn a letter of March 25, 1992 to the author, Serre wrote: “It is difficult for me to recall
my discussions (of 1964-65) with Grothendieck precisely, but 1 am almost sure that: (a) he
dreamed about motives which we now called mixed; I remember for instance telling him that the
corresponding £-adic representations are no more semi-simple (the example being an exterision

of an Abelian variety by a multiplicative group); (b) he had no precise definition of them (that
I knew of); this is probably why he did not mention them in print”.



6 STEVEN L. KLEIMAN

a proper, smooth, and connected family F/T, a cycle C on F, and two
points 5, of T such that F(s) = X and C(s) = Z and C(t) = 0. For
example, if Z is algebraically equivalent to 0, then we may take F = X x T
for a suitable T .

The Lefschetz standard conjecture has a weaker form, which asserts that
the composition of the projection and the inclusion,

H*(X) » H'(X) — H'(X),
is induced by an algebraic cycle ' on XxX. Consequently, the neq mo-
tive of X decomposes into a direct sum of pieces that correspond to the
individual groups H'(X).
The standard conjectures imply therefore that the canonical functor

h: ((smooth, projective varieties)) — ((neqg motives))

is a sort of universal cohomology theory: any contravariant functor that is for-
mally like X — H*(X) and satisfies the standard conjectures factors through
k. Hence, the category of motives may be used as an abstract substitute for
singular cohomology to compare “motivated” properties of the various co-
homology theories. For example, every endomorphism of a variety induces
an endomorphism of each of its cohomology groups. Does the characteristic
polynomial have integer coefficients that are independent of the theory? The
answer is yes if the standard conjectures hold; see Corollary 5-5.

As are other universal objects, the category of neq motives is constructed
by making the minimal modifications necessary to the original object, the cat-
egory of smooth, projective varieties. From this point of view, each induced
functor

2 ((neq motives)) — ((graded Q -vector spaces))
is called a “realization” of the category of motives. Nowadays, some prefer
to start from the category of vector spaces and work toward the category of
motives (see [1] for example). From this point of view, the various functors
p are called “improvements”™.

Section 2 of this paper introduces the three Weil conjectures and their con-
nection with the standard conjectures. Section 3 introduces the notion of a
Weil cohomology and develops the theory of cohomological correspondences,
which forms the basis of the theory of the two standard conjectures. Section 4
introduces the cohomology operator A and three related operators. Then it
states eight forms of the Lefschetz standard conjecture and investigates the
relationship among them. Section 5 states the Hodge standard conjecture.
Then it shows that, in the presence of this conjecture, the Lefschetz standard
conjecture is equivalent to another conjecture, that homological equivalence
and numerical equivalence coincide. Finally, it shows how the two standard
conjectures yield the refined form of the third Weil conjecture, the Riemann
hypothesis, which asserts this: the action of the Frobenius endomorphism ®
on the cohomology group H’ (X) is semisimple, its characteristic polynomial
has integer coefficients, which are independent of the choice of cohomology
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theory, and its eigenvalues are of absolute value qﬁ 2. The proofs in this
paper on occasion refer to [12] for details; however, the spirit of each proof
normally remains intact.

2. The Weil conjectures

Let X be an irreducible, smooth, projective variety of dimension r de-
fined by polynomials with coefficients in the finite field Fq with g elements,
where ¢ is a power of the characteristic p. For each integer n > 1, let v,
denote the number of points of X with coordinates in the extension field -
Fqn ; in other words,

v, = #X(F ).
Form the following “logarithmic” generating function for v, :
logZ(t):= > vt /n.
n>1
The function Z(z) is called the zeta function of X , although another function
Z(q™") is denoted by {(s).
By specifying the shape of Z(t), the Weil conjectures describe the growth

-of v,. The function Z(f) was introduced in 1923 by E. Artin. He did so

after Hecke had revived interest in Dedekind’s extension of Riemann’s zeta

function to number fields. Artin considered hyperelliptic function fields over

F, and proved that Z(¢) is a rational function with a functional equation.

He conjectured that its zeros lie on the circle [t = q” ? and called this

conjecture the “Riemann hypothesis”. In 1931, F. K. Schmidt reformulated

the theory in the language of algebraic geometry and extended the formulation

to arbitrary smooth, projective curves. Weil formulated his conjectures in

arbitrary dimension around 1950. Some additional history is given below;

to learn more, see Dieudonné’s fascinating article [3], his extensive book [4],

and Katz’s masterful introduction [10].

For example, consider the projective r-space P’ . The standard decompo-
sition,

P =A"mA'I.. A",
of P’ into the disjoint union of affine spaces yields

vy=1+q"+---+q".
So the definition of log Z{¢) yvields

logZ() =Y "/n+) g't"/n+--+) g t/n

Now, use the standard power series expansion,

log(l —u) =— E u"In.
It yields the final expression for Z(¢) as a rational function,
1

Z0= G e (=aD
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To treat a general X, we use its Frobenius endomorphism @, which
carries a point x of X to the point x? of X, whose coordinates are the
gth powers of those of x:

O: XX, Dx)=x"
Obviously, v, is equal to the number of points x of X left fixed by the
nth iterate @", at least set-theoretically. In fact, v, is equal to the weighted
number of fixed points; for the latter is, by definition, the intersection number
on X x X of the graph of ®" with the diagonal, and the intersection is
transverse. Hasse introduced this nse of @ in 1936, and then he and Deuring
pointed out the relevance of the theory of correspondences.

Finally, let H'(X) be the ith £-adic cohomology group as in §1. Then
the Lefschetz fixed-point formula (or trace formula) expresses v, as the al-
ternating sum of the traces of the endomorphisms of the H' (X) induced by
pullback under ®":

2r . A
v, = »_(=1)" Te(®"|H' (X)).
i=0
The groups HO(X ) and H* "(X) are 1-dimensional vector spaces and, on
them, ®" induces the identity and multiplication by ¢ respectively, be-
cause ®": X — X is a finite surjective map of degree rn. For 0 < i <2r,
let w;; be the eigenvalues of ®{H'(X). Then the eigenvalues of ®"|H (X)
are the nth powers wl'; Hence,
2r=1 .
v, =1+ (-1)'> w +q™
i=1 i
As in the example of P" above, using the expansion of log(1—u), we find
that Z(¢) is a rational function

P(t)---P,_,(2)
Fy(OP,(t)--- Py, _,(O)P, (D)7
where the P;(£) are not exactly the characteristic polynomials, but
P (1) == 11 — w;t) = det((1 — t@)|H'(X)).
j

Moreover, Py=1—¢ and P, (t)=1-g't.

The rationality of Z(t) is the first of the three Weil conjectures; in fact,
Weil himself explained the above way of using the Lefschetz formula.® How-

ever, the first proof of the rationality was given in 1960 by Dwork, who, in-
stead, made an ingenious use of p-adic analytic functions; moreover, Dwork

Z(1) =

31In a letter of March 25, 1992 to the author, Serre wrote: “ ... the idea of counting points
over Fq by a Lefschetz formula is entirely an idea of Weil. 1 remember how enthusiastic I
was when he explained it to me, and a few years later I managed to convey my enthusiasm to
Grothendieck (whose taste was not a priori directed towards finite fields).”
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proved the rationality for an arbitrary variety, one that need not be smooth
or projective. In 1963, M. Artin and Grothendieck developed enough of the
theory of étale cohomology to justify the use of Weil’s Lefschetz formalism
for smooth, projective varieties. Furthermore, they proved a more general
result, which Weil had conjectured as well, but which Dwork’s methods did
not yield: the rationality of certain L-functions, generalizing those intro-
duced by E. Artin. In addition, they proved a base change theorem and a
comparison theorem, which imply another part of what Weil conjectured: if
X is the reduction mod p of a complex variety X' defined by equations
with.coeflicients in-a number field, then P/(¢) has degree equal to the ith
Betti number of X’ (no w,; vanishes because ®|H'(X) is nonsingular).

Two years later, in 1965, M. Artin, Grothendieck, and Verdier proved the
rationality of L-functions of an even more general sort on an arbitrary va-
riety, recovering Dwork’s theorem in particular. To do so, they developed a
theory of cohomology with compact supports and reduced the general state-
ment to the case in which X is a smooth, projective curve. Finally, in that
case, they proved a suitable version of the Lefschetz formula. However, there
was still no way to rule out cancellation among the P,(¢) above; so it was
still conceivable that the coefficients of the P,(f) were not ordinary integers
and depended on ¢. Cancellation was ruled out in 1973 by Deligne, for it is
ruled out by the Riemann hypothesis.

Poincaré duality yields the second Weil conjecture, which asserts that Z(z)
satisfies the following functional equation:

Z(1/q"t) = (-1 g™z (),

where x is the Euler characteristic, the alternating sum of the dimensions
of the H'(X), and where u is 0 if » is odd, and g is the multiplicity of
¢ as an eigenvalue w,; if r is even. (This x is, unfortunately, missing
from [12, 4.4, p. 385] as N. Katz kindly pointed out March 4, 1969.) Indeed,
under the duality, the transpose of ®|H”(X) is equal to ¢"(®|H'(X))™".
Hence, up to order, .the numbers Wipr_p)j and q"w,.;1 are equal. The func-
tional equation follows via a simple computation. Poincaré duality and the
functional equation were also proved in 1963 by Artin and Grothendieck.

The third and last Weil conjecture, the Riemann hypothesis, specifies the
absolute value of the eigenvalues w; it

i

i
fwl=q".

The w; ; are algebraic integers, and each appears along with all its conju-
gates, because the characteristic polynomial of ®[H '(X) isequal to % PeY
where b, := dim H'(X), the ith Beiti number of X. The conjecture was

proved in two different ways in 1933 and 1934 for elliptic curves by Hasse,
and in two different ways over the course of the 1940s for curves of arbitrary



10 STEVEN L. KLEIMAN

genus by Weil. The conjecture was finally proved in 1973 for arbitrary X by
Deligne.

It is also generally conjectured that the endomorphisms OH g (X) are
semisimple. This conjecture was proved by Weil for curves, abelian varieties,
and a few other varieties, but it is still unknown in general. It is implied by
the standard conjectures; see Theorem 5-6.

3. Correspondences

The theory of the standard conjectures is purely formal, so we shall develop
it using an arbitrary Weil cohomology theory. This is a contravariant functor
X — H*(X) from the category of irreducible, smooth, projective varieties X
over an algebraically closed field to the category of graded anticommutative
algebras over a “coefficient field” K of characteristic zero, with the following
properties:

(1) (finiteness) Each H'(X) has finite dimension, and vanishes unless
0<i<2r where r =dimX.

(2) (Poincaré duality) For each X of dimension r, there is a functorial
“orientation” isomorphism Hzr(X ) = K and, preceded by the cup
product (multiplication) pairing, it yields a nondegenerate bilinear
pairing,

H'(X) x B (X) > K by x,y e (x-3),
where, forany u in H"(X), the symbol {(x) denotes the image under

the orientation map of the projection of u in HZ'(X }. For conve-
nience, given a ¥ of dimension s and a map f: X — Y, let

f;: HZ(X) - H25—2r+i(Y)

denote the transpose of f*: H* 7/ (Y) » H” /(X)) .-
(3) (Kiinneth formula) For each X and Y, the projections induce an
isomorphism
H'(X)® H'(Y) S H' (X x Y).
(4) (cycle map) For each X, let Ci(X ) denote the group of algebraic
cycles of codimension 7. Then there is a group homomorphism
75 C'(X) — HY(X),
called the “cycle map”, satisfying
(i) (functoriality) for each map f: X — Y,
ny = y,\'f and f;yX = yYf; )
(ii) (multiplicitivity) 7, yZxW)=y,(Z)®y,(W), and
(iti) (calibration) if P is a point, then y,: C°(P) — H°(P) is

equal to the canonical inclusion of the integers Z into the coefficient
field X .
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(5) (weak Lefschetz theorem) Let ~: W — X be the inclusion of a
smooth hyperplane section, and set r := dim X . Then the induced
map h*: H'(X) — H' (W) is an isomorphism for { <7 —2 and an
injection for i=r—1.

(6) (strong Lefschetz theorem) Let W be a smooth hyperplane section
of X, set r:=dimX, and define the Lefschetz operator

L: Hi(X) — H”Z(X) by Lx :=x -y (W).
Then, for i < r, the (r — i)th iterate of L is an isomorphism
LI H(X) S HY 7 (X).

All of these properties were proved in 1963 for étale cohomology by Artin
and Grothendieck, except for the last one, the strong Lefschetz theorem. It
was proved in 1973 by Deligne at the same time that he proved the Riemann
hypothesis. To everyone’s surprise, the Lefschetz theorem turned out to be
the deeper result. Immediately afterwards, Katz and Messing [11] proved
that, because the strong Lefschetz theorem holds for étale cohomology, it
holds, when the ground field is the algebraic closure of a finite field, for any
cohomology theory, like crystalline cohomology, that possesses all the other
properties, except possibly (4), the existence of a cycle map.

The properties above imply that the cycle map y, preserves product; in-
deed, if §: X — X x X is the diagonal map, then

YR(Z W) =138 (Z x W) =8 (y4(Z) ® (W)
= J’X(Z) " J’X(W)
for any two properly intersecting algebraic cycles Z and W on X . Itis also

easy to prove (see [12, 1.2.1, p. 363]) that if some nonzero multiple mZ is
algebraically equivalent to 0, then y,(Z) = 0. Denote the Q-vector subspace
of H*(X) generated by the various Yx(Z) by A'x).

The Kiinneth formula, Poincaré duality, and some linear algebra yield the
following three canonical isomorphisms:

H' (X xY)=H"(X)® H(Y) =Hom(H" (X), K) ® H'(Y)
= Hom(H"(X), H"(Y)).
Thus an element u of H*(XxY) may be viewed as a linear map, or operator,
from H'(X) to H"(Y). Viewed this way, u is called a correspondence. If
# is in the Q-vector subspace A"(X x X), then u is called algebraic.
It is easy to see that, if u =a®b in H'(X x Y), then u(x) = {x-a)b.
Hence, an arbitrary u is given by the formula

u(x) = p,, (1 1),

where p, and p, are the projections. Moreover, if « is in H2'+d(X x X)
where r = dim X, then u is equal to a homogeneous linear map of degree
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d. On the other hand, if v isin H'(Y x Z), then the composition vu of
linear maps is identified with a cycle in H"(X x Z), namely,

* *
VU = P3Pyl - Py3v),
where again the p’s are the projections. In particular, this formula shows
that if ¥ and v are defined by algebraic cycles, then so is their composition
VU,

Here are three basic examples of correspondences; they and others are
discussed in more detail in [12, pp. 365-6]. First, given amap g: ¥ — X,
let u in H*(X x ¥) be the class of its graph, and ‘u in H*(X x Y) the
“transpose” of u. Then u = g* and 'u= g, . Second, given x in H(X),
let u: H'(X) — H*(X) be the map of right multiplication by x. Then
# = 6,x where §: X — X x X is the diagonal map. In particular, u is
equal to its own transpose ‘u. Third, consider the diagonal subvariety A of
XxX.Fori=1,...,2r where r = dim X , form the Kiinneth components
of yy yA:

e H(X)  H'(X).
Then 7' is equal to the composition
z': H*(X) » H'(X) — H*(X)
of the canonical projection and the canonical inclusion. In particular, z' s
a projector. Moreover, obviously, 77 ="%". So z¥" is algebraic if and
only if #’ is. )
A correspondence u in H” (X x X) induces an endomorphism of H'(X)

for each i, and the endomorphism’s trace is given by the following lovely
formula:

(trace formula) Tr(u|H' (X)) = (~1) (u- 27 7.

This formula is simple to check; see [12, 1.3.6(ii), p.366], where a more
general version is treated as well.

The next result is particularly important because, when combined with
the first example above, it implies this: given f: X — X, the induced en-
domorphism f|H'(X) is such that its characteristic polynomial has integer
coeflicients.

THEOREM 3-1. Assume n> " is algebraic where r = dimX. Let u be a

correspondence defined by an algebraic cycle on X x X , and let t be a variable.

Then det((1 —ut)|H' (X)) is a polynomial with integer coefficients, and these

coefficients are given by universal polynomials in the rational numbers,

2r—i
)

. n
s, = (U -m

Jor n=1,..., b, where b, := dimHi(X).

Indeed, by hypothesis, there is an integer m such that mu*" is defined
by an algebraic cycle. Moreover, since # is defined by an algebraic cycle,
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so is the composition #" for all n > 0. Hence ms, is an integer because
y converts intersection product into “cup” product. Now, the trace formula
implies that s, is equal to the sum of the nth powers of the eigenvalues
of u|H'(X). It follows that the eigenvalues are algebraic integers; see [12,
2.8, p.371]. Hence, the coeflicients of the characteristic polynomial are alge-
braic integers too. However, they are also rational numbers because, solving
the Newton identities, we can express them as universal polynomials with
rational coefficients in s, for n =1, ..., b,. Thus the proof is complete.

4. The Lefschetz standard conjecture

Fix a Weil cohomology theory X +— H"(X). The Lefschetz standard
conjecture has numerous forms. The most important form involves a natural
quasi-inverse (one-sided inverse) A to the Lefschetz operator L. We define
A on H'(X) for 0< i <r where r:=dimX by the following commutative
diagram:

H{(X) L7 i (X)
2| 3
2 (X) L2 it (X)

in which the two horizontal maps are isomorphisms by the strong Lefschetz
theorem. We define A on H*~"**(X) by the following similar commutative
diagram.:

H(x) £ B

] o]
-2 (X) A Gy (X)

Clearly, A is surjective on H'(X) and injective on H> ""*(X).
Alternatively, we can define A using primitive elements. These are the
elements of the following vector space:

P(X) := Ker(L|H' (X)).

Clearly P (X) is a direct summand of Hi(X }, the other summand being
LH'(X). Hence, each x in H'(X) has a unique decomposition of the
following form, known as its primitive decomposition:

J i~2j
X = Z L'x; where x; € P "(X).
J>max(i—r,0)
We can now define A by the following formula:
Ax = Z Lj~1x..

jzmax(i—r, 1)
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Similarly, we can define three additional useful operators as follows:

€A ; . j-1
Ax = Z jn-i+j+ 1)L x;
Jemax(i-r,1)
= Z (__1)(i—2j)(i——2j+1)/2Lr-—i+jxj;

j>max(i~r,0)

I'd 'x —6Uxm where m := max(i —r, 0) for j=0,...,2r.

(The formula for p! corrects [12, 1.4. 2.4, p. 367]) Thus p’ is the projector
onto P/(X) for j=0,...,r and p’ —pz'"]Ar for j=r,...,2r. Itis
easy to check that ¥t = 1 and A =sLx.

We can now state eight forms of the Lefschetz standard conjecture; they
and a few more are discussed in greater detail in [12]. Four of the eight simply
assert that the above four operators are algebraic. Three of the remaining four
sound weaker, but, in fact, six of the seven are outright equivalent, and the
seventh is practically equivalent. The eighth form (stated third) is, doubtless,
truly weaker. The three principal forms are the followmg statements:

A(X, L): The restriction L' *: 4'(X) — A"™'(X) is an isomorphism for
all 7.
B(X): The operator A is algebraic.
C(X): The projector 7' is algebraic for 0 < i< 2r.
The five additional forms of the conjecture are as follows:
°B(X): The operator ‘A is algebraic.
6(X): For each i < r, there exists an algebralc correspondence 6" in-
ducing the isomorphism HY ~'(X) = H'(X) inverse to L.
v(X): For each i < r, there exists an algebralc correspondence v in-
ducing an isomorphism H" I(x) S H'(X).
PC(X): The operator p' is algebraic for 0 <i<2r.
*(X): The operator = is algebraic.

The following result expresses the relationship among the above eight

forms of the conjecture. It also justifies omitting the “ L™ from B(X).

THEOREM 4-1.

(1) Conjecture A(X x X, L®1+1® L) implies B(X).

(2) Conjecture B(X) holds for all choices of L if it holds for one.
(3) The following conjectures are equivalent:

B(X), “B(X), 6(X), v(X), "C(X), =(X).
(4) Conjecture B(X) implies A(X, L) and C(X).

Indeed, assume B(X), and set 8 == A", Then @' is algebraic, and it
induces an inverse to L™ . Thus #(X) holds.

Assume 6(X). Clearly, any algebraic correspondence carries A*(X) into
itself. Hence 0(X) implies 4(X, L). Now, the following formula is easy to
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=6 (1 — Z nj) L (1 —Zn’) ;
J>2r—i J<i

Proceeding by induction on i, we conclude that §(X) implies C(X). There-
fore (4) holds. Finally, 6(X) implies B(X) because of the following for-
mula, which is easy to verify:

A= Z(Hi_10i+2Lr_i+l1ti + nzr—iLr—i+l 0i+21t2r_i+2).

i<r’

verify:

Trivially, H(X ) implies »(X). Conversely, assume v(X) and set u :
v'L"™". Then u is algebraic. So, by Theorem 3-1, its characteristic poly-
normal P(t) has rational coefficients. By the Cayley-Hamilton theorem,
P(u) = 0. Hence #”' is a linear combination of the powers u’ for j >0,
and the comblmng coefficients are rational numbers. So #~! is algebraic. Set
6 :=u"'v’. Then 6 is algebraic, and it is the inverse of L™~ on H*~/(X);
in other words, #(X) holds.

Since v(X) does not involve L, and since v(X) is equivalent to 8(X)
and to B(X), the latter two conditions hold for all possible choices of L if
either holds for one choice. Thus (2) holds.

Clearly, “B(X) implies »(X). Conversely, 6(X) implies *C(X); in fact,
the p' are given by universal (noncommutative) polynomials with integer
coefficients in L and the 8', see [12, 1.4.4, p. 368]. Clearly, C(X) implies
°B(X) and *(X). Since A = +L+, obviously x(X) implies B(X). Thus (3)
holds.

Finally, assume A(X x X, L®1+1®L). Then ‘A® 1+ 1®° A carries
A" (X x X) into itself by [12, 1.4.6(ii), p. 368] and [12, 2.1, p. 369]. However,
‘A®14+1®°A carries the class of the diagonal subvariety A into 2°A by
[12, 1.3.4, p. 365]. Thus “B(X) holds. So B(X) holds. Thus (1) holds. The
proof is now complete.

The final part of the proof is due to Jannsen (private commumcatlon,
October 24, 1991). Assertion (1) was stated without proof by Grothendieck
[5, p.196]. In [12, 2.13, p.372], only the following weaker statement was
proved: B(X) is implied by A(X x X, L® 1+ 1® L) and B(W), where
W is a smooth hyperplane section of X . However, the weaker statement is
enough to yield the next result.

CoROLLARY 4-2. Conjecture A(X, L) holds for all X and L if and only
if B(X) holds for all X .

The following result gives some examples of varieties X for which the
conjectures are known to hold. It aIso gives two ways to construct new exam-
ples from oid ones. Note that, if H' (X) is the étale cohomology group, then
its dimension is equal to twice the dimension of the connected component
of the Picard scheme Pico(X ).
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PROPOSITION 4-3. (1) Conjecture B(X) is stable under product and under
hyperplane section.

(2) Conjecture B(X) holds if X is (a) a curve, (b) a surface such that the
dimension of H'(X) is twice that of Pic®(X), (c) an Abelian variety, or (d)
a generalized flag manifold G/P.

(3) Conjecture C(X) holds if X is defined by equations with coeﬁiczents
in a finite field.

Indeed, B(X) is stable under product because by [12, 1.4.6(ii), p. 368]
CAXxY = CAX ®1+1 ®CA}'-
If W is a smooth hyperplane section of X, then by [12, 1.4.7(vii), p. 369]
=AY S

hence, B(X) implies B(W). If X is a curve, then B(X) is trivial. If
X = G/P, then the algebraic cycles generate H'(X) because the class of
the diagonal is of the form } x; ® y, where x; and y, are the classes of
algebraic cycles (this argument is in Schubert’s 1879 book [17, §39, §41] for
GL (4, C); the argument has been rediscovered several times since then).
Since X x X is equal to (G x G)/(P x P), therefore B(X) holds trivially. If
X 1is a surface or an abelian variety, then a few pages of argument are needed
to establish B(X); see [12, §2 Appendix, pp. 373~378]. For a surface, the
proof is essentially due to Grothendieck; for an abelian variety, the proof
grew out of discussions between the author and Lieberman. Finally, (3)

was proved by Katz and Messing [11] using the Riemann hypothesis, which
Deligne had just established.

CoROLLARY 4-4. The following three conjectures are equivalent.
AXxX,Lol+1®L), B(X), B(X x X).

Indeed, A(X x X, L®1+1®L) implies B(X) by Theorem 4-1 (1). Fur-
thermore, B(X) implies B(X xX) by Proposition 4-3 (1). Finally, B(X xX)
implies A(X x X, L® 1+ 1® L) by Theorem 4-1 (4).

5. The Hodge standard conjecture

Fix a Weil cohomology theory X + H*(X). The Hodge standard conjec-
ture concerns the cup product pairing on the primitive algebraic cohomology
classes on a smooth, projective X of dimension r:

Hdg(X) : For all i < /2, the Q-valued pairing on 4'(X) n P¥(X),
X,y (DI x ),
is positive definite.

In characteristic zero, the conjecture is true for étale cohomology; indeed,
by the Lefschetz principle, we may assume that the ground field is the field
of complex numbers, and then the comparison theorem and standard Hodge
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theory yield Hdg(X). In arbitrary characteristic, Hdg(X) holds if X is a
surface. A purely algebraic proof, which works in arbitrary characteristic,
was given in 1937 by B. Segre [18]; independently, in 1958, Grothendieck [6]
gave a similar proof.

There is another widely believed, long-standing conjecture:

D(X): If an algebraic cycle Z on X is numerically equivalent to O,
then y,(Z) = 0; in other words, numerical equivalence and homological
equivalence coincide on X .

Of course, if y,(Z) = 0, then Z is numerically equivalent to 0 because
Yy converts intersection product into cup product. Hence, D(X) may be put
as follows: On X, homological equivalence of algebraic cycles is the same
as numerical equivalence. The relationship between this conjecture and the
two standard conjectures is given by the next result.

ProprosiTION 5-1. Conjecture D(X) implies A(X, L), and the converse
holds—in other words, the two conjectures are equivalent—in the presence of
Hdg(X).

Indeed, assume A(X, L). Clearly, + carries 4 /(X) into 4'(X). As-
‘sume Hdg(X) too. Then, therefore, the quadratic form on A'(X),

X,y (x-%p),
is positive definite. Consequently, the canonical pairing
(5-1) AN ed(x)~Q

is nonsingular. Hence, D(X) holds. A

Assume D(X). Then pairing (5-1) is nonsingular. Hence A'(X) and
AH(X) have the same dimension, which is finite by the following lemma
because D(X) holds. Since the map

L A4 - 47X

is injective because of the strong Lefschetz theorem, it is therefore bijective;
in other words, A(X, L) holds.

LEMMA 5-2. Let C:;eq(X ) denote the group of cycles on X modulo numer-

ical equivalence. Then C;eq(X ) is a free abelian group of finite rank.
Indeed, form the K-vector subspace of H> ~>(X) generated by the image

of 7y, and choose y,, ..., y, inthe image that form a basis. Consider the
map,

ety C'(X) - 2" given by a(x) := ({x - ¥,) s v s (X7,

It is easy to see that the image of o is equal to C! (X). So the latter is a

neq
free group of finite rank.
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COROLLARY 5-3. Assume that the ground field is the field of complex num-
bers, that the cohomology theory is the de Rham theory, and that the ordinary
Hodge conjecture holds for X. Then A(X, L) and D(X) hold,

Indeed, it is an immediate consequence of standard Hodge theory that the
map

L2 H P X)nHY(X,Q) —» H P P(X)nH (X, Q)

is bijective. The ordinary Hodge conjecture asserts that the source and target
. are equal to 4'(X) and 4" '(X) respectively. Thus A4(X, L) holds, and
Proposition 5-1 implies that D(X) holds.

ProrosITION 5-4. If Hdg(X x X) and B(X) hold, then the operators A,
‘A, %, and p' and ©' for all i are defined by algebraic cycles that are
independent of the cohomology theory.

Indeed, D(X x X) holds by Corollary 4-4, and the 7' are represented
by algebraic cycles on X x X by Theorem 4-1, (3) and (4). These repre-
sentatives may be chosen without regard to the cohomology theory because
their numerical equivalence classes are intrinsically determined as elements
of the ring of algebraic correspondences by the following general fact [12,

3.15, p. 382]: a graded, noncommutative ring E* = EB;=__r E? with 1 has
2r

at most one complete set of orthogonal idempotents no, ..., %" such that
(@) Ef = @,n""PE*n’ and (b) for i = 0, ..., r there exist elements £’
in 7% and A' in E"%® such that (A'¢' - 1)x’ and (4" — 1)2®~!
vanish. Now, by Theorem 4-1 (3), the operator A is represented by an alge-
braic cycle; so, see [12, 1.4.6, p. 368], the cycle’s numerical equivalence class
is uniquely determined by the formula: [‘A, L] = E?;O(n-i)n' . Finally, the
remaining operators are given by universal (noncommutative) polynomials in
L and “A;see[12, 1.4.3, p. 367, and 1.4.5, p. 368].

The following result gives one reason why the two standard conjectures are
important.

COROLLARY 5-5. Assume B(X) and Hdg(X x X).

(1) Then the Betti numbers dim H i(X ) are independent of the cohomology
theory.

(2) Let u be a correspondence defined by an algebraic cycle on X x X . Then
its characteristic polynomial has integer coefficients, which are independent of
the cohomology theory.

Indeed, by Proposition 5-4, all the z' are defined by algebraic cycles that
are independent of the cohomology theory. Hence (1) follows from the trace
formula in §3, applied to u := 1, . Moreover, (2) follows from Theorem 3-1.

The final result addresses the issue of semisimplicity and the standard con-
jectures. Connections among Tate’s conjecture, semisimplicity, and Conjec-
ture D(X) were explored recently by Deligne, by Jannsen, and by Katz and
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Messing; their work appeared in informally distributed handwritten notes of
July 1991, and it was incorporated in Tate’s article [20] in these proceedings.

THEOREM 5-6. Assume B(X) and Hdg(X x X).

(1) Then, under composition of correspondences, A" (X x X) is a semi-
simple Q-algebra.

(2) (generalized Riemann hypothesis) Assume X is defined by equations
with coefficients in the finite field with q elements, and let ¢ denote its
Frobenius endomorphism. Then the induced endomorphism ®|H'(X) is semi-
simple, its characteristic polynomial has integer coefficients, which are inde-
pendent ;)f the choice of cohomology theory, and its eigenvalues are of absolute
value q

Indeed, given any correspondence #, set u' := x'ux where 'u is the
transpose of u. Suppose u is algebraic. Then so is ', because *(X) holds
by Theorem 4-1 (3). Now, C(X) holds by Theorem 4-1 (3); hence, the
trace formula in §3 implies that Tr(x'u) is in Q. Furthermore, a calculation
shows that Hdg(X x X) implies that Tr(z'z) > 0 if u # 0; see [12, 3.11,
p. 381].

To prove (1), suppose u is a nonzero element of the radical. Then Wu
is nilpotent, but «'u # 0 since Tr(u'u) # 0. Say (W'u)? =0, but v :=
(u'u)zm_l #0. Then v'v = v*> =0, but Tr(v'v) # 0, a contradiction. Thus
(1) holds. '

Consider (2). By Corollary 5-4, the characteristic polynomial of ®|H "(X)
has integer coefficients, which are intrinsic. Finally, set @, := ®|H (X) and
g:=2 (Di/qilz. Then g is an automorphism of the algebra H*(X) and
g|H¥(X) = 1. It follows formally [12, 4.2, p.384] that g~' ='g. Clearly,
g carries the class of a hyperplane section injo itself. Hence, g induces an
automorphism of each pﬁmitive subspace P'(X). Therefore, 'g commutes
with *. Hence g’ =#'g#*="g. By the preceding paragraph, the pairing

u, v+ Tr(u'v)

is an inner product on the Q(ql/ 2)-algebra generated by g. Since g'g=1,
left translation by g preserves this inner product. It follows that g is semi-
simple and its eigenvalues have absolute value 1. (The final argument is
found in Serre’s paper [19].) The proof is now complete.
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